Download building the data warehouse in pdf or read building the data warehouse in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get building the data warehouse in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Building The Data Warehouse

Autor: W. H. Inmon
Publisher: John Wiley & Sons
ISBN: 0471270482
File Size: 8,17 MB
Format: PDF
Read: 8968
Download or Read Book
The data warehousing bible updated for the new millennium Updated and expanded to reflect the many technological advances occurring since the previous edition, this latest edition of the data warehousing "bible" provides a comprehensive introduction to building data marts, operational data stores, the Corporate Information Factory, exploration warehouses, and Web-enabled warehouses. Written by the father of the data warehouse concept, the book also reviews the unique requirements for supporting e-business and explores various ways in which the traditional data warehouse can be integrated with new technologies to provide enhanced customer service, sales, and support-both online and offline-including near-line data storage techniques.

Building The Data Warehouse

Autor: W. H. Inmon
Publisher: Wiley
ISBN: 9780471081302
File Size: 25,89 MB
Format: PDF, Mobi
Read: 4770
Download or Read Book
The data warehousing bible updated for the new millennium Updated and expanded to reflect the many technological advances occurring since the previous edition, this latest edition of the data warehousing "bible" provides a comprehensive introduction to building data marts, operational data stores, the Corporate Information Factory, exploration warehouses, and Web-enabled warehouses. Written by the father of the data warehouse concept, the book also reviews the unique requirements for supporting e-business and explores various ways in which the traditional data warehouse can be integrated with new technologies to provide enhanced customer service, sales, and support-both online and offline-including near-line data storage techniques.

Building The Data Warehouse

Autor: W. H. Inmon
Publisher:
ISBN:
File Size: 12,54 MB
Format: PDF, Docs
Read: 5949
Download or Read Book
The data warehousing bible updated for the new millennium Updated and expanded to reflect the many technological advances occurring since the previous edition, this latest edition of the data warehousing "bible" provides a comprehensive introduction to building data marts, operational data stores, the Corporate Information Factory, exploration warehouses, and Web-enabled warehouses. Written by the father of the data warehouse concept, the book also reviews the unique requirements for supporting e-business and explores various ways in which the traditional data warehouse can be integrated with new technologies to provide enhanced customer service, sales, and support-both online and offline-including near-line data storage techniques.

Building The Data Warehouse

Autor: W. H. Inmon
Publisher: John Wiley & Sons
ISBN: 0471774235
File Size: 18,87 MB
Format: PDF, Kindle
Read: 7762
Download or Read Book
The new edition of the classic bestseller that launched thedata warehousing industry covers new approaches and technologies,many of which have been pioneered by Inmon himself In addition to explaining the fundamentals of data warehousesystems, the book covers new topics such as methods for handlingunstructured data in a data warehouse and storing data acrossmultiple storage media Discusses the pros and cons of relational versusmultidimensional design and how to measure return on investment inplanning data warehouse projects Covers advanced topics, including data monitoring andtesting Although the book includes an extra 100 pages worth of valuablecontent, the price has actually been reduced from $65 to $55

Building The Data Warehouse

Autor: William H. Inmon
Publisher: QED Information Sciences
ISBN: 9780894354045
File Size: 4,41 MB
Format: PDF, Mobi
Read: 8379
Download or Read Book
"Data warehouses provide a much-needed strategy for organizations to collect, store, and analyze vast amounts of business data. As businesses expand both brick-and-mortar and online activities, the field of data warehousing has become increasingly important. Since it was first published in 1990, W. H. Inmon's Building the Data Warehouse has been the bible of data warehousing - it is the book that launched the data warehousing industry and it remains the preeminent introduction to the subject. This new edition covers the latest developments with this technology, many of which have been pioneered by Inmon himself."--BOOK JACKET.

Building The Data Warehouse

Autor: William H. Inmon
Publisher: John Wiley & Sons Inc
ISBN:
File Size: 5,94 MB
Format: PDF, Docs
Read: 6573
Download or Read Book
The data warehousing bible updated for the new millennium Updated and expanded to reflect the many technological advances occurring since the previous edition, this latest edition of the data warehousing "bible" provides a comprehensive introduction to building data marts, operational data stores, the Corporate Information Factory, exploration warehouses, and Web-enabled warehouses. Written by the father of the data warehouse concept, the book also reviews the unique requirements for supporting e-business and explores various ways in which the traditional data warehouse can be integrated with new technologies to provide enhanced customer service, sales, and support-both online and offline-including near-line data storage techniques.

Building A Data Warehouse

Autor: Vincent Rainardi
Publisher: Apress
ISBN: 1430205288
File Size: 10,39 MB
Format: PDF, Mobi
Read: 4028
Download or Read Book
Here is the ideal field guide for data warehousing implementation. This book first teaches you how to build a data warehouse, including defining the architecture, understanding the methodology, gathering the requirements, designing the data models, and creating the databases. Coverage then explains how to populate the data warehouse and explores how to present data to users using reports and multidimensional databases and how to use the data in the data warehouse for business intelligence, customer relationship management, and other purposes. It also details testing and how to administer data warehouse operation.

Building A Scalable Data Warehouse With Data Vault 2 0

Autor: Dan Linstedt
Publisher: Morgan Kaufmann
ISBN: 0128026480
File Size: 9,80 MB
Format: PDF, Mobi
Read: 4705
Download or Read Book
The Data Vault was invented by Dan Linstedt at the U.S. Department of Defense, and the standard has been successfully applied to data warehousing projects at organizations of different sizes, from small to large-size corporations. Due to its simplified design, which is adapted from nature, the Data Vault 2.0 standard helps prevent typical data warehousing failures. "Building a Scalable Data Warehouse" covers everything one needs to know to create a scalable data warehouse end to end, including a presentation of the Data Vault modeling technique, which provides the foundations to create a technical data warehouse layer. The book discusses how to build the data warehouse incrementally using the agile Data Vault 2.0 methodology. In addition, readers will learn how to create the input layer (the stage layer) and the presentation layer (data mart) of the Data Vault 2.0 architecture including implementation best practices. Drawing upon years of practical experience and using numerous examples and an easy to understand framework, Dan Linstedt and Michael Olschimke discuss: How to load each layer using SQL Server Integration Services (SSIS), including automation of the Data Vault loading processes. Important data warehouse technologies and practices. Data Quality Services (DQS) and Master Data Services (MDS) in the context of the Data Vault architecture. Provides a complete introduction to data warehousing, applications, and the business context so readers can get-up and running fast Explains theoretical concepts and provides hands-on instruction on how to build and implement a data warehouse Demystifies data vault modeling with beginning, intermediate, and advanced techniques Discusses the advantages of the data vault approach over other techniques, also including the latest updates to Data Vault 2.0 and multiple improvements to Data Vault 1.0

Building And Maintaining A Data Warehouse

Autor: Fon Silvers
Publisher: CRC Press
ISBN: 9781420064636
File Size: 20,88 MB
Format: PDF, ePub, Mobi
Read: 4975
Download or Read Book
As it is with building a house, most of the work necessary to build a data warehouse is neither visible nor obvious when looking at the completed product. While it may be easy to plan for a data warehouse that incorporates all the right concepts, taking the steps needed to create a warehouse that is as functional and user-friendly as it is theoretically sound, is not especially easy. That’s the challenge that Building and Maintaininga Data Warehouse answers. Based on a foundation of industry-accepted principles, this work provides an easy-to-follow approach that is cohesive and holistic. By offering the perspective of a successful data warehouse, as well as that of a failed one, this workdetails those factors that must be accomplished and those that are best avoided. Organized to logically progress from more general to specific information, this valuable guide: Presents areas of a data warehouse individually and in sequence, showing how each piece becomes a working part of the whole Examines the concepts and principles that are at the foundation of every successful data warehouse Explains how to recognize and attend to problematic gaps in an established data warehouse Provides the big picture perspective that planners and executives require Those considering the planning and creation of a data warehouse, as well as those who’ve already built one will profit greatly from the insights garnered by the author during his years of creating and gathering information on state-of-the-art data warehouses that are accessible, convenient, and reliable.

Building A Data Warehouse For Decision Support

Autor: Vidette Poe
Publisher: Prentice Hall
ISBN:
File Size: 29,45 MB
Format: PDF, Kindle
Read: 8450
Download or Read Book
Completely revised, expanded, and updated, this second edition gives extensive new coverage of data integration, management, indexing, cleansing, and transformation. The book covers powerful new multi-dimensional front-ends and conversion tools and gives detailed coverage of lifecycle issues.

Dw 2 0 The Architecture For The Next Generation Of Data Warehousing

Autor: W.H. Inmon
Publisher: Elsevier
ISBN: 9780080558332
File Size: 9,78 MB
Format: PDF, Mobi
Read: 8291
Download or Read Book
DW 2.0: The Architecture for the Next Generation of Data Warehousing is the first book on the new generation of data warehouse architecture, DW 2.0, by the father of the data warehouse. The book describes the future of data warehousing that is technologically possible today, at both an architectural level and technology level. The perspective of the book is from the top down: looking at the overall architecture and then delving into the issues underlying the components. This allows people who are building or using a data warehouse to see what lies ahead and determine what new technology to buy, how to plan extensions to the data warehouse, what can be salvaged from the current system, and how to justify the expense at the most practical level. This book gives experienced data warehouse professionals everything they need in order to implement the new generation DW 2.0. It is designed for professionals in the IT organization, including data architects, DBAs, systems design and development professionals, as well as data warehouse and knowledge management professionals. * First book on the new generation of data warehouse architecture, DW 2.0. * Written by the "father of the data warehouse", Bill Inmon, a columnist and newsletter editor of The Bill Inmon Channel on the Business Intelligence Network. * Long overdue comprehensive coverage of the implementation of technology and tools that enable the new generation of the DW: metadata, temporal data, ETL, unstructured data, and data quality control.

Data Warehousing In The Age Of Big Data

Autor: Krish Krishnan
Publisher: Newnes
ISBN: 0124059201
File Size: 14,95 MB
Format: PDF, Docs
Read: 1133
Download or Read Book
Data Warehousing in the Age of the Big Data will help you and your organization make the most of unstructured data with your existing data warehouse. As Big Data continues to revolutionize how we use data, it doesn't have to create more confusion. Expert author Krish Krishnan helps you make sense of how Big Data fits into the world of data warehousing in clear and concise detail. The book is presented in three distinct parts. Part 1 discusses Big Data, its technologies and use cases from early adopters. Part 2 addresses data warehousing, its shortcomings, and new architecture options, workloads, and integration techniques for Big Data and the data warehouse. Part 3 deals with data governance, data visualization, information life-cycle management, data scientists, and implementing a Big Data–ready data warehouse. Extensive appendixes include case studies from vendor implementations and a special segment on how we can build a healthcare information factory. Ultimately, this book will help you navigate through the complex layers of Big Data and data warehousing while providing you information on how to effectively think about using all these technologies and the architectures to design the next-generation data warehouse. Learn how to leverage Big Data by effectively integrating it into your data warehouse. Includes real-world examples and use cases that clearly demonstrate Hadoop, NoSQL, HBASE, Hive, and other Big Data technologies Understand how to optimize and tune your current data warehouse infrastructure and integrate newer infrastructure matching data processing workloads and requirements

Data Warehousing

Autor: Tom Hammergren
Publisher: Coriolis Group
ISBN:
File Size: 27,57 MB
Format: PDF, Docs
Read: 8196
Download or Read Book
This book covers the fundamentals of successfully designing, modeling and delivering a data warehouse and details techniques and links readers to a comprehensive methodology that enables system professionals to build and deliver a data warehouse that meets both corporate and management needs. The book features a skeleton project plan to assist readers in setting up their own project.

Building The Unstructured Data Warehouse

Autor: Bill Inmon
Publisher: Technics Publications
ISBN: 1634620348
File Size: 21,10 MB
Format: PDF, ePub
Read: 2628
Download or Read Book
Learn essential techniques from data warehouse legend Bill Inmon on how to build the reporting environment your business needs now! Answers for many valuable business questions hide in text. How well can your existing reporting environment extract the necessary text from email, spreadsheets, and documents, and put it in a useful format for analytics and reporting? Transforming the traditional data warehouse into an efficient unstructured data warehouse requires additional skills from the analyst, architect, designer, and developer. This book will prepare you to successfully implement an unstructured data warehouse and, through clear explanations, examples, and case studies, you will learn new techniques and tips to successfully obtain and analyze text. Master these ten objectives: • Build an unstructured data warehouse using the 11-step approach • Integrate text and describe it in terms of homogeneity, relevance, medium, volume, and structure • Overcome challenges including blather, the Tower of Babel, and lack of natural relationships • Avoid the Data Junkyard and combat the “Spider’s Web” • Reuse techniques perfected in the traditional data warehouse and Data Warehouse 2.0,including iterative development • Apply essential techniques for textual Extract, Transform, and Load (ETL) such as phrase recognition, stop word filtering, and synonym replacement • Design the Document Inventory system and link unstructured text to structured data • Leverage indexes for efficient text analysis and taxonomies for useful external categorization • Manage large volumes of data using advanced techniques such as backward pointers • Evaluate technology choices suitable for unstructured data processing, such as data warehouse appliances The following outline briefly describes each chapter’s content: • Chapter 1 defines unstructured data and explains why text is the main focus of this book. The sources for text, including documents, email, and spreadsheets, are described in terms of factors such as homogeneity, relevance, and structure. • Chapter 2 addresses the challenges one faces when managing unstructured data. These challenges include volume, blather, the Tower of Babel, spelling, and lack of natural relationships. Learn how to avoid a data junkyard, which occurs when unstructured data is not properly integrated into the data warehouse. This chapter emphasizes the importance of storing integrated unstructured data in a relational structure. We are cautioned on both the commonality and dangers associated with text based on paper. • Chapter 3 begins with a timeline of applications, highlighting their evolution over the decades. Eventually, powerful yet siloed applications created a “spider’s web” environment. This chapter describes how data warehouses solved many problems, including the creation of corporate data, the ability to get out of the maintenance backlog conundrum, and greater data integrity and data accessibility. There were problems, however, with the data warehouse that were addressed in Data Warehouse 2.0 (DW 2.0), such as the inevitable data lifecycle. This chapter discusses the DW 2.0 architecture, which leads into the role of the unstructured data warehouse. The unstructured data warehouse is defined and benefits are given. There are several features of the conventional data warehouse that can be leveraged for the unstructured data warehouse, including ETL processing, textual integration, and iterative development. • Chapter 4 focuses on the heart of the unstructured data warehouse: Textual Extract, Transform, and Load (ETL). This chapter has separate sections on extracting text, transforming text, and loading text. The chapter emphasizes the issues around source data. There are a wide variety of sources, and each of the sources has its own set of considerations. Extracting pointers are provided, such as reading documents only once and recognizing common and different file types. Transforming text requires addressing many considerations discussed in this chapter, including phrase recognition, stop word filtering, and synonym replacement. Loading text is the final step. There are important points to understand here, too, that are explained in this chapter, such as the importance of the thematic approach and knowing how to handle large volumes of data. Two ETL examples are provided, one on email and one on spreadsheets. • Chapter 5 describes the 11 steps required to develop the unstructured data warehouse. The methodology explained in this chapter is a combination of both traditional system development lifecycle and spiral approaches. • Chapter 6 describes how to inventory documents for maximum analysis value, as well as link the unstructured text to structured data for even greater value. The Document Inventory is discussed, which is similar to a library card catalog used for organizing corporate documents. This chapter explores ways of linking unstructured text to structured data. The emphasis is on taking unstructured data and reducing it into a form of data that is structured. Related concepts to linking, such as probabilistic linkages and dynamic linkages, are discussed. • Chapter 7 goes through each of the different types of indexes necessary to make text analysis efficient. Indexes range from simple indexes, which are fast to create and are good if the analyst really knows what needs to be analyzed before the indexing process begins, to complex combined indexes, which can be made up of any and all of the other kinds of indexes. • Chapter 8 explains taxonomies and how they can be used within the unstructured data warehouse. Both simple and complicated taxonomies are discussed. Techniques to help the reader leverage taxonomies, including using preferred taxonomies, external categorization, and cluster analysis are described. Real world problems are raised, including the possibilities of encountering hierarchies, multiple types, and recursion. The chapter ends with a discussion comparing a taxonomy with a data model. • Chapter 9 explains ways of coping with large amounts of unstructured data. Techniques such as keeping the unstructured data at its source and using backward pointers are discussed. The chapter explains why iterative development is so important. Ways of reducing the amount of data are presented, including screening and removing extraneous data, as well as parallelizing the workload. • Chapter 10 focuses on challenges and some technology choices that are suitable for unstructured data processing. The traditional data warehouse processing technology is reviewed. In addition, the data warehouse appliance is discussed. • Chapters 11, 12, and 13 put all of the previously discussed techniques and approaches in context through three case studies: the Ablatz Medical Group, the Eastern Hills Oil Company, and the Amber Oil Company.

Mastering Data Warehouse Design

Autor: Claudia Imhoff
Publisher: John Wiley & Sons
ISBN: 0471480924
File Size: 3,24 MB
Format: PDF
Read: 2753
Download or Read Book
A cutting-edge response to Ralph Kimball's challenge to thedata warehouse community that answers some tough questions aboutthe effectiveness of the relational approach to datawarehousing Written by one of the best-known exponents of the Bill Inmonapproach to data warehousing Addresses head-on the tough issues raised by Kimball andexplains how to choose the best modeling technique for solvingcommon data warehouse design problems Weighs the pros and cons of relational vs. dimensional modelingtechniques Focuses on tough modeling problems, including creating andmaintaining keys and modeling calendars, hierarchies, transactions,and data quality

The Data Webhouse Toolkit

Autor: Ralph Kimball
Publisher: Wiley
ISBN: 9780471376804
File Size: 20,57 MB
Format: PDF
Read: 560
Download or Read Book
"Ralph's latest book ushers in the second wave of the Internet. . . . Bottom line, this book provides the insight to help companies combine Internet-based business intelligence with the bounty of customer data generated from the internet."--William Schmarzo, Director World Wide Solutions, Sales, and Marketing,IBM NUMA-Q. Receiving over 100 million hits a day, the most popular commercial Websites have an excellent opportunity to collect valuable customer data that can help create better service and improve sales. Companies can use this information to determine buying habits, provide customers with recommendations on new products, and much more. Unfortunately, many companies fail to take full advantage of this deluge of information because they lack the necessary resources to effectively analyze it. In this groundbreaking guide, data warehousing's bestselling author, Ralph Kimball, introduces readers to the Data Webhouse--the marriage of the data warehouse and the Web. If designed and deployed correctly, the Webhouse can become the linchpin of the modern, customer-focused company, providing competitive information essential to managers and strategic decision makers. In this book, Dr. Kimball explains the key elements of the Webhouse and provides detailed guidelines for designing, building, and managing the Webhouse. The results are a business better positioned to stay healthy and competitive. In this book, you'll learn methods for: - Tracking Website user actions - Determining whether a customer is about to switch to a competitor - Determining whether a particular Web ad is working - Capturing data points about customer behavior - Designing the Website to support Webhousing - Building clickstream datamarts - Designing the Webhouse user interface - Managing and scaling the Webhouse The companion Website at www.wiley.com/compbooks/kimball provides updates on Webhouse technologies and techniques, as well as links to related sites and resources.

Building The Operational Data Store

Autor: W. H. Inmon
Publisher: Wiley
ISBN: 9780471328889
File Size: 9,21 MB
Format: PDF, Docs
Read: 9057
Download or Read Book
The most comprehensive guide to building, using, and managing the operational data store. Building the Operational Data Store, Second Edition. In the five years since the publication of the first edition of this book, the operational data store has grown from an intriguing concept to an exciting reality at enterprise organizations, worldwide. Still the only guide on the subject, this revised and expanded edition of Bill Inmon's classic goes beyond the theory of the first edition to provide detailed, practical guidance on designing, building, managing, and getting the most of an ODS. With the help of fascinating and instructive case studies, Inmon shares what he knows about: * How the ODS fits with the corporate information factory. * Different types of ODS and how to choose the right one for your organization. * Designing and building an ODS from scratch. * Managing and fine-tuning an ODS for peak efficiency. * ODS support technology. * The pros and cons of competing off-the-shelf ODS products. * The advantages and disadvantages of various hardware and software platforms. * Integrating the ODS with data marts. * Distributed metadata using the ODS. * Data aggregation within the ODS. * Business process reengineering and the ODS. * The role of standards in the ODS. Visit our Web site at www.wiley.com/compbooks/

Building The Unstructured Data Warehouse

Autor: W. H. Inmon
Publisher: Technics Publications
ISBN: 1935504045
File Size: 24,41 MB
Format: PDF, ePub, Mobi
Read: 9619
Download or Read Book
Learn essential techniques from data warehouse legend Bill Inmon on how to build the reporting environment your business needs now! Answers for many valuable business questions hide in text. How well can your existing reporting environment extract the necessary text from email, spreadsheets, and documents, and put it in a useful format for analytics and reporting? Transforming the traditional data warehouse into an efficient unstructured data warehouse requires additional skills from the analyst, architect, designer, and developer. This book will prepare you to successfully implement an unstructured data warehouse and, through clear explanations, examples, and case studies, you will learn new techniques and tips to successfully obtain and analyze text.Master these ten objectives: • Build an unstructured data warehouse using the 11-step approach • Integrate text and describe it in terms of homogeneity, relevance, medium, volume, and structure • Overcome challenges including blather, the Tower of Babel, and lack of natural relationships • Avoid the Data Junkyard and combat the “Spider's Web” • Reuse techniques perfected in the traditional data warehouse and Data Warehouse 2.0,including iterative development • Apply essential techniques for textual Extract, Transform, and Load (ETL) such as phrase recognition, stop word filtering, and synonym replacement • Design the Document Inventory system and link unstructured text to structured data • Leverage indexes for efficient text analysis and taxonomies for useful external categorization • Manage large volumes of data using advanced techniques such as backward pointers • Evaluate technology choices suitable for unstructured data processing, such as data warehouse appliances The following outline briefly describes each chapter's content: • Chapter 1 defines unstructured data and explains why text is the main focus of this book. The sources for text, including documents, email, and spreadsheets, are described in terms of factors such as homogeneity, relevance, and structure.• Chapter 2 addresses the challenges one faces when managing unstructured data. These challenges include volume, blather, the Tower of Babel, spelling, and lack of natural relationships. Learn how to avoid a data junkyard, which occurs when unstructured data is not properly integrated into the data warehouse. This chapter emphasizes the importance of storing integrated unstructured data in a relational structure. We are cautioned on both the commonality and dangers associated with text based on paper.• Chapter 3 begins with a timeline of applications, highlighting their evolution over the decades. Eventually, powerful yet siloed applications created a “spider's web” environment. This chapter describes how data warehouses solved many problems, including the creation of corporate data, the ability to get out of the maintenance backlog conundrum, and greater data integrity and data accessibility. There were problems, however, with the data warehouse that were addressed in Data Warehouse 2.0 (DW 2.0), such as the inevitable data lifecycle. This chapter discusses the DW 2.0 architecture, which leads into the role of the unstructured data warehouse. The unstructured data warehouse is defined and benefits are given. There are several features of the conventional data warehouse that can be leveraged for the unstructured data warehouse, including ETL processing, textual integration, and iterative development.• Chapter 4 focuses on the heart of the unstructured data warehouse: Textual Extract, Transform, and Load (ETL). This chapter has separate sections on extracting text, transforming text, and loading text. The chapter emphasizes the issues around source data. There are a wide variety of sources, and each of the sources has its own set of considerations. Extracting pointers are provided, such as reading documents only once and recognizing common and different file types. Transforming text requires addressing many considerations discussed in this chapter, including phrase recognition, stop word filtering, and synonym replacement. Loading text is the final step. There are important points to understand here, too, that are explained in this chapter, such as the importance of the thematic approach and knowing how to handle large volumes of data. Two ETL examples are provided, one on email and one on spreadsheets.• Chapter 5 describes the 11 steps required to develop the unstructured data warehouse. The methodology explained in this chapter is a combination of both traditional system development lifecycle and spiral approaches.• Chapter 6 describes how to inventory documents for maximum analysis value, as well as link the unstructured text to structured data for even greater value. The Document Inventory is discussed, which is similar to a library card catalog used for organizing corporate documents. This chapter explores ways of linking unstructured text to structured data. The emphasis is on taking unstructured data and reducing it into a form of data that is structured. Related concepts to linking, such as probabilistic linkages and dynamic linkages, are discussed.• Chapter 7 goes through each of the different types of indexes necessary to make text analysis efficient. Indexes range from simple indexes, which are fast to create and are good if the analyst really knows what needs to be analyzed before the indexing process begins, to complex combined indexes, which can be made up of any and all of the other kinds of indexes.• Chapter 8 explains taxonomies and how they can be used within the unstructured data warehouse. Both simple and complicated taxonomies are discussed. Techniques to help the reader leverage taxonomies, including using preferred taxonomies, external categorization, and cluster analysis are described. Real world problems are raised, including the possibilities of encountering hierarchies, multiple types, and recursion. The chapter ends with a discussion comparing a taxonomy with a data model.• Chapter 9 explains ways of coping with large amounts of unstructured data. Techniques such as keeping the unstructured data at its source and using backward pointers are discussed. The chapter explains why iterative development is so important. Ways of reducing the amount of data are presented, including screening and removing extraneous data, as well as parallelizing the workload.• Chapter 10 focuses on challenges and some technology choices that are suitable for unstructured data processing. The traditional data warehouse processing technology is reviewed. In addition, the data warehouse appliance is discussed.• Chapters 11, 12, and 13 put all of the previously discussed techniques and approaches in context through three case studies: the Ablatz Medical Group, the Eastern Hills Oil Company, and the Amber Oil Company.

Fundamentals Of Data Warehouses

Autor: Matthias Jarke
Publisher: Springer Science & Business Media
ISBN: 3662051532
File Size: 12,25 MB
Format: PDF, Kindle
Read: 3348
Download or Read Book
This book presents the first comparative review of the state of the art and the best current practices of data warehouses. It covers source and data integration, multidimensional aggregation, query optimization, metadata management, quality assessment, and design optimization. A conceptual framework is presented by which the architecture and quality of a data warehouse can be assessed and improved using enriched metadata management combined with advanced techniques from databases, business modeling, and artificial intelligence.

Data Warehousing

Autor: Paul Westerman
Publisher: Morgan Kaufmann
ISBN: 9781558606845
File Size: 24,70 MB
Format: PDF, Mobi
Read: 9116
Download or Read Book
What is data warehousing? -- Project planning -- Business exploration -- Business case study and ROI analysis -- Organizational integration -- Technology -- Database maintenance -- Technical construction of the Wal-Mart data warehouse -- Postimplementation of the Wal-Mart data warehouse -- Store operations sample analyses -- Merchandising sample analyses.